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Abstract

We show the equivalence of the recently formulated backward Darboux
transformation of GoOmez-Ullate et al and the Junker—-Roy method of
constructing isospectral Hamiltonians.

PACS numbers: 03.65.Fd, 03.65.Ge

The problem of enlarging the class of exactly solvable potentials in quantum mechanics has
been studied by both physicists and mathematicians time and again. Families of Hamiltonians
isospectral to a given exactly solvable Hamiltonian have been generated, either by inserting a
new ground state, or deleting the original ground state, or maintaining an identical spectrum,
by employing various techniques—the Darboux transformation [1] or the equivalent approach
developed by Abraham and Moses [2], the factorization method of Infeld and Hull [3], the
approach of supersymmetric (SUSY) quantum mechanics [4, 5] or that due to Pursey [6], etc.

In a recent paper, Gémez-Ullate, Kamran and Milson [8] investigate the backward
Darboux transformation of shape-invariant potentials. By using the backward Darboux
transformation they have obtained a number of non-shape-invariant exactly solvable potentials.
On the other hand, a few years back, another formalism was developed by Junker and Roy [7],
based on the SUSY formulation of one-dimensional systems, to construct a hierarchy of new
families of the so-called conditionally exactly solvable (CES) systems, starting from known
exactly solvable potentials [9]. Their approach is applicable to cases with both broken and
unbroken SUSY.

In the present study our aim is to show the equivalence of the Junker—Roy [7] method and
the backward Darboux transformation [8] method, taking the linear harmonic oscillator as an
explicit example.

Let us start with the Hamiltonian (we follow the notation of [8])

H=-0,+Ux) (1)
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such that ¢ (x) is a formal eigenfunction of H (x). Then the backward Darboux transformation
U (x) is given by [8]

Ux) = U(x) +20,, )
where

o =—Ing. (3)

The spectrum of U(x) has an additional eigenvalue corresponding to the ground state
eigenfunction

Yo=¢ . )

The rest of the spectrum of U (x) is identical to that of U (x).
If the scenario is perceived in the framework of SUSY quantum mechanics, then the
SUSY partner Hamiltonians Hy defined by [7]

2

d
Hy(x) = =77 + Ve (x) &)

are isospectral, except for a possible additional vanishing eigenvalue in one of the two
Hamiltonians, H, in the case of unbroken SUSY.
The so-called SUSY partner potentials V4 (x) are expressed in terms of the superpotential
Wi(x) as
Vi(x) = W2(x) £ W(x). (6)
If Vi(x) is an exactly solvable potential, then one can easily obtain the complete spectral
properties of the partner V_(x) [7]. The point to be noted here is that V_(x) is not essentially

shape invariant, but still exactly solvable.
One can take the following ansatz for the superpotential W (x),

W(x) = Wolx) + f(x) )

where the superpotential Wy (x) is chosen such that for f = 0 the corresponding partner
potentials Vi (x) belong to the known class of exactly solvable potentials.
If f is chosen such that it obeys the generalized Riccati equation

FRE) +2Wo(x) f(x) + f/(x) = b (8)

where b is an arbitrary real constant, then the partner potentials take the form
Vi(x) = Wg(x) + Wi(x) +b 9)
Vo) = W) — W) +b — 2/ (x). (10)

In the above expressions, b is an additive constant and V. (x) is taken to be exactly solvable.
Choosing

£ =9 5 ) (1)
u(x)
(8) reduces to
u” (x) + 2Wo(x)u'(x) — bu(x) =0 (12)

with the general solution as

u(x) = aui(x) + Bur(x). (13)
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In the case of unbroken SUSY, V_(x) has an additional ground state given by

Yolx) = exp(—/ W(x) dx) = —exp( fWo(x) dx> (14)

Putting v/ ' = x, the equation satisfied by y is found to be
—x"+ (W5 +Wj+b)x =0 (15)

Le. x is a formal eigenfunction of V. (x).
Thus if one identifies V. (x) with {U (x) + B}, where § is some constant, then

X=¢
so that

Ux) = U(x) +20,,
~ d2

d2

=Vi@)—p -2 5n¢

=W02—W6+b—2f—/3

=V_(x)— 8. (16)

This proves the equivalence of the Junker—Roy approach [7] and the backward Darboux
one [8].

Linear harmonic oscillator

In this section we demonstrate the equivalence of the two methods with the help of an explicit
example, namely, the linear harmonic oscillator.
Ux) = x2 (17)

The formal eigenfunctions can be obtained from the solutions of equation (12) [7]. A set of
simple formal eigenfunctions is of the form [7, §]

(—=D*
2(3 )

x

= U e? (18)

O = ———— Ho(ix) e

(S}

where H,, (z) denote the generalized Hermite polynomials [10].
Hence from (2) and (3), the backward Darboux transform of U (x) assumes the form

. 2 .
il D) } Fl6kk — 12200 )
Hyy (ix)

UP(x)=x>—2—32k> {
Ho (ix)

Since
uy = Hy(ix) (20)
f turns out to be
_ 4ikH2k_1 (lx)

Hy (ix)
k

2gx
= Z (21)
1+ gx2




8404 Comment

and
b =4k B=b+1 (22)
giving the following superpotentials for successive orders:
k=1
W) = x4+ —8 2 (23)
X)) =X e =
1+ gx2 &
k=2
2 2
W) =x+ —2 <878 (24)
1+gx2 1+ gyx?
with
g1 =2+2V6 (25)
g =2-3V6 (26)

proving that if one starts with the backward Darboux transformation [8], one can reproduce all
the results of the CES potentials of Junker and Roy [7] and vice versa, showing the equivalence
of the two methods. Analogous analyses hold for the Morse, the hyperbolic Péschl-Teller and
other potentials.
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