Comment on 'The Darboux transformation and algebraic deformations of shape-invariant potentials'

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2004 J. Phys. A: Math. Gen. 378401
(http://iopscience.iop.org/0305-4470/37/34/N01)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.64
The article was downloaded on 02/06/2010 at 19:02

Please note that terms and conditions apply.

Comment on 'The Darboux transformation and algebraic deformations of shape-invariant potentials,

A Sinha ${ }^{1}$ and P Roy ${ }^{2}$
${ }^{1}$ Department of Applied Mathematics, Calcutta University, 92, APC Road, Kolkata-700 009, India
${ }^{2}$ Physics \& Applied Mathematics Unit, Indian Statistical Institute, Kolkata-700 108, India
E-mail: anjana23@rediffmail.com and pinaki@isical.ac.in

Received 30 January 2004
Published 11 August 2004
Online at stacks.iop.org/JPhysA/37/8401
doi:10.1088/0305-4470/37/34/N01

Abstract

We show the equivalence of the recently formulated backward Darboux transformation of Gómez-Ullate et al and the Junker-Roy method of constructing isospectral Hamiltonians.

PACS numbers: 03.65.Fd, 03.65.Ge

The problem of enlarging the class of exactly solvable potentials in quantum mechanics has been studied by both physicists and mathematicians time and again. Families of Hamiltonians isospectral to a given exactly solvable Hamiltonian have been generated, either by inserting a new ground state, or deleting the original ground state, or maintaining an identical spectrum, by employing various techniques-the Darboux transformation [1] or the equivalent approach developed by Abraham and Moses [2], the factorization method of Infeld and Hull [3], the approach of supersymmetric (SUSY) quantum mechanics [4, 5] or that due to Pursey [6], etc.

In a recent paper, Gómez-Ullate, Kamran and Milson [8] investigate the backward Darboux transformation of shape-invariant potentials. By using the backward Darboux transformation they have obtained a number of non-shape-invariant exactly solvable potentials. On the other hand, a few years back, another formalism was developed by Junker and Roy [7], based on the SUSY formulation of one-dimensional systems, to construct a hierarchy of new families of the so-called conditionally exactly solvable (CES) systems, starting from known exactly solvable potentials [9]. Their approach is applicable to cases with both broken and unbroken SUSY.

In the present study our aim is to show the equivalence of the Junker-Roy [7] method and the backward Darboux transformation [8] method, taking the linear harmonic oscillator as an explicit example.

Let us start with the Hamiltonian (we follow the notation of [8])

$$
\begin{equation*}
\widehat{H}=-\partial_{x x}+\widehat{U}(x) \tag{1}
\end{equation*}
$$

such that $\phi(x)$ is a formal eigenfunction of $\widehat{H}(x)$. Then the backward Darboux transformation $\widehat{U}(x)$ is given by [8]

$$
\begin{equation*}
U(x)=\widehat{U}(x)+2 \sigma_{x x} \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma=-\ln \phi . \tag{3}
\end{equation*}
$$

The spectrum of $U(x)$ has an additional eigenvalue corresponding to the ground state eigenfunction

$$
\begin{equation*}
\psi_{0}=\phi^{-1} \tag{4}
\end{equation*}
$$

The rest of the spectrum of $U(x)$ is identical to that of $\widehat{U}(x)$.
If the scenario is perceived in the framework of SUSY quantum mechanics, then the SUSY partner Hamiltonians $H_{ \pm}$defined by [7]

$$
\begin{equation*}
H_{ \pm}(x)=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+V_{ \pm}(x) \tag{5}
\end{equation*}
$$

are isospectral, except for a possible additional vanishing eigenvalue in one of the two Hamiltonians, $H_{ \pm}$, in the case of unbroken SUSY.

The so-called SUSY partner potentials $V_{ \pm}(x)$ are expressed in terms of the superpotential $W(x)$ as

$$
\begin{equation*}
V_{ \pm}(x)=W^{2}(x) \pm W^{\prime}(x) \tag{6}
\end{equation*}
$$

If $V_{+}(x)$ is an exactly solvable potential, then one can easily obtain the complete spectral properties of the partner $V_{-}(x)$ [7]. The point to be noted here is that $V_{-}(x)$ is not essentially shape invariant, but still exactly solvable.

One can take the following ansatz for the superpotential $W(x)$,

$$
\begin{equation*}
W(x)=W_{0}(x)+f(x) \tag{7}
\end{equation*}
$$

where the superpotential $W_{0}(x)$ is chosen such that for $f=0$ the corresponding partner potentials $V_{ \pm}(x)$ belong to the known class of exactly solvable potentials.

If f is chosen such that it obeys the generalized Riccati equation

$$
\begin{equation*}
f^{2}(x)+2 W_{0}(x) f(x)+f^{\prime}(x)=b \tag{8}
\end{equation*}
$$

where b is an arbitrary real constant, then the partner potentials take the form

$$
\begin{align*}
& V_{+}(x)=W_{0}^{2}(x)+W_{0}^{\prime}(x)+b \tag{9}\\
& V_{-}(x)=W_{0}^{2}(x)-W_{0}^{\prime}(x)+b-2 f^{\prime}(x) \tag{10}
\end{align*}
$$

In the above expressions, b is an additive constant and $V_{+}(x)$ is taken to be exactly solvable. Choosing

$$
\begin{equation*}
f(x)=\frac{u^{\prime}(x)}{u(x)}=\partial_{x} \ln u(x) \tag{11}
\end{equation*}
$$

(8) reduces to

$$
\begin{equation*}
u^{\prime \prime}(x)+2 W_{0}(x) u^{\prime}(x)-b u(x)=0 \tag{12}
\end{equation*}
$$

with the general solution as

$$
\begin{equation*}
u(x)=\alpha u_{1}(x)+\beta u_{2}(x) \tag{13}
\end{equation*}
$$

In the case of unbroken SUSY, $V_{-}(x)$ has an additional ground state given by

$$
\begin{equation*}
\psi_{0}(x)=\exp \left(-\int W(x) \mathrm{d} x\right)=\frac{1}{u(x)} \exp \left(-\int W_{0}(x) \mathrm{d} x\right) \tag{14}
\end{equation*}
$$

Putting $\psi_{0}^{-1}=\chi$, the equation satisfied by χ is found to be

$$
\begin{equation*}
-\chi^{\prime \prime}+\left(W_{0}^{2}+W_{0}^{\prime}+b\right) \chi=0 \tag{15}
\end{equation*}
$$

i.e. χ is a formal eigenfunction of $V_{+}(x)$.

Thus if one identifies $V_{+}(x)$ with $\{\widehat{U}(x)+\beta\}$, where β is some constant, then

$$
\chi \equiv \phi
$$

so that

$$
\begin{align*}
U(x) & =\widehat{U}(x)+2 \sigma_{x x} \\
& =\widehat{U}(x)-2 \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} \ln \phi \\
& =V_{+}(x)-\beta-2 \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} \ln \phi \\
& =W_{0}^{2}-W_{0}^{\prime}+b-2 f^{\prime}-\beta \\
& =V_{-}(x)-\beta . \tag{16}
\end{align*}
$$

This proves the equivalence of the Junker-Roy approach [7] and the backward Darboux one [8].

Linear harmonic oscillator

In this section we demonstrate the equivalence of the two methods with the help of an explicit example, namely, the linear harmonic oscillator.

$$
\begin{equation*}
\widehat{U}(x)=x^{2} \tag{17}
\end{equation*}
$$

The formal eigenfunctions can be obtained from the solutions of equation (12) [7]. A set of simple formal eigenfunctions is of the form [7, 8]

$$
\begin{align*}
\phi_{k} & =\frac{(-1)^{k}}{2^{k}\left(\frac{1}{2}\right)_{k}} H_{2 k}(\mathrm{i} x) \mathrm{e}^{\frac{x^{2}}{2}} \\
& =\alpha_{k} u_{k} \mathrm{e}^{\frac{x^{2}}{2}} \tag{18}
\end{align*}
$$

where $H_{m}(z)$ denote the generalized Hermite polynomials [10].
Hence from (2) and (3), the backward Darboux transform of $\widehat{U}(x)$ assumes the form

$$
\begin{equation*}
U^{(k)}(x)=x^{2}-2-32 k^{2}\left\{\frac{H_{2 k-1}(\mathrm{i} x)}{H_{2 k}(\mathrm{i} x)}\right\}^{2}+16 k(2 k-1) \frac{H_{2 k-2}(\mathrm{i} x)}{H_{2 k}(\mathrm{i} x)} \tag{19}
\end{equation*}
$$

Since

$$
\begin{equation*}
u_{k}=H_{2 k}(\mathrm{i} x) \tag{20}
\end{equation*}
$$

f turns out to be

$$
\begin{align*}
f & =\frac{4 \mathrm{i} k H_{2 k-1}(\mathrm{i} x)}{H_{2 k}(\mathrm{i} x)} \\
& =\sum_{i=1}^{k} \frac{2 g x}{1+g x^{2}} \tag{21}
\end{align*}
$$

and

$$
\begin{equation*}
b=4 k \quad \beta=b+1 \tag{22}
\end{equation*}
$$

giving the following superpotentials for successive orders:
$k=1$

$$
\begin{equation*}
W(x)=x+\frac{2 g x}{1+g x^{2}} \quad g=2 \tag{23}
\end{equation*}
$$

$k=2$

$$
\begin{equation*}
W(x)=x+\frac{2 g_{1} x}{1+g_{1} x^{2}}+\frac{2 g_{2} x}{1+g_{2} x^{2}} \tag{24}
\end{equation*}
$$

with

$$
\begin{align*}
& g_{1}=2+\frac{2}{3} \sqrt{6} \tag{25}\\
& g_{2}=2-\frac{2}{3} \sqrt{6} \tag{26}
\end{align*}
$$

proving that if one starts with the backward Darboux transformation [8], one can reproduce all the results of the CES potentials of Junker and Roy [7] and vice versa, showing the equivalence of the two methods. Analogous analyses hold for the Morse, the hyperbolic Pöschl-Teller and other potentials.

Acknowledgment

One of the authors (AS) thanks the Council of Scientific \& Industrial Research, India, for financial assistance.

References

[1] Darboux G 1982 C. R. Acad. Sci., Paris 941456
Matveev V B and Salle M A 1991 Darboux Transformations and Solitons (Springer Series in Nonlinear Dynamics) (Berlin: Springer)
[2] Abraham P B and Moses H E 1980 Phys. Rev. A 221333
[3] Infeld L and Hull T E 1951 Rev. Mod. Phys. 2328
[4] Witten E 1981 Nucl. Phys. B 188513
[5] Sukumar C V 1985 J. Phys. A: Math. Gen. 182917
[6] Pursey D L 1986 Phys. Rev. D 331048 Pursey D L 1986 Phys. Rev. D 332267 Pursey D L 1987 Phys. Rev. D 361103
[7] Junker G and Roy P 1998 Ann. Phys. 270155 Junker G and Roy P 1997 Phys. Lett. A 232155
[8] Gómez-Ullate D, Kamran N and Milson R 2004 J. Phys. A: Math. Gen. 371789
[9] Gendenshtein L E 1983 JETP Lett. 38356
[10] Abramowitz M and Stegun I A 1970 Handbook of Mathematical Functions (New York: Dover)

