

Home Search Collections Journals About Contact us My IOPscience

Comment on 'The Darboux transformation and algebraic deformations of shape-invariant potentials'

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2004 J. Phys. A: Math. Gen. 37 8401 (http://iopscience.iop.org/0305-4470/37/34/N01) View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.64 The article was downloaded on 02/06/2010 at 19:02

Please note that terms and conditions apply.

J. Phys. A: Math. Gen. 37 (2004) 8401-8404

PII: S0305-4470(04)75566-3

COMMENT

Comment on 'The Darboux transformation and algebraic deformations of shape-invariant potentials'

A Sinha¹ and P Roy²

¹ Department of Applied Mathematics, Calcutta University, 92, APC Road, Kolkata-700 009, India

² Physics & Applied Mathematics Unit, Indian Statistical Institute, Kolkata-700 108, India

E-mail: anjana23@rediffmail.com and pinaki@isical.ac.in

Received 30 January 2004 Published 11 August 2004 Online at stacks.iop.org/JPhysA/37/8401 doi:10.1088/0305-4470/37/34/N01

Abstract

We show the equivalence of the recently formulated backward Darboux transformation of Gómez-Ullate *et al* and the Junker–Roy method of constructing isospectral Hamiltonians.

PACS numbers: 03.65.Fd, 03.65.Ge

The problem of enlarging the class of exactly solvable potentials in quantum mechanics has been studied by both physicists and mathematicians time and again. Families of Hamiltonians isospectral to a given exactly solvable Hamiltonian have been generated, either by inserting a new ground state, or deleting the original ground state, or maintaining an identical spectrum, by employing various techniques—the Darboux transformation [1] or the equivalent approach developed by Abraham and Moses [2], the factorization method of Infeld and Hull [3], the approach of supersymmetric (SUSY) quantum mechanics [4, 5] or that due to Pursey [6], etc.

In a recent paper, Gómez-Ullate, Kamran and Milson [8] investigate the backward Darboux transformation of shape-invariant potentials. By using the backward Darboux transformation they have obtained a number of non-shape-invariant exactly solvable potentials. On the other hand, a few years back, another formalism was developed by Junker and Roy [7], based on the SUSY formulation of one-dimensional systems, to construct a hierarchy of new families of the so-called conditionally exactly solvable (CES) systems, starting from known exactly solvable potentials [9]. Their approach is applicable to cases with both broken and unbroken SUSY.

In the present study our aim is to show the equivalence of the Junker–Roy [7] method and the backward Darboux transformation [8] method, taking the linear harmonic oscillator as an explicit example.

Let us start with the Hamiltonian (we follow the notation of [8])

$$\widehat{H} = -\partial_{xx} + \widehat{U}(x) \tag{1}$$

0305-4470/04/348401+04\$30.00 © 2004 IOP Publishing Ltd Printed in the UK 8401

such that $\phi(x)$ is a formal eigenfunction of $\widehat{H}(x)$. Then the backward Darboux transformation $\widehat{U}(x)$ is given by [8]

$$U(x) = \widehat{U}(x) + 2\sigma_{xx} \tag{2}$$

where

$$\sigma = -\ln\phi. \tag{3}$$

The spectrum of U(x) has an additional eigenvalue corresponding to the ground state eigenfunction

$$\psi_0 = \phi^{-1}.\tag{4}$$

The rest of the spectrum of U(x) is identical to that of $\widehat{U}(x)$.

If the scenario is perceived in the framework of SUSY quantum mechanics, then the SUSY partner Hamiltonians H_{\pm} defined by [7]

$$H_{\pm}(x) = -\frac{d^2}{dx^2} + V_{\pm}(x)$$
(5)

are isospectral, except for a possible additional vanishing eigenvalue in one of the two Hamiltonians, H_+ , in the case of unbroken SUSY.

The so-called SUSY partner potentials $V_{\pm}(x)$ are expressed in terms of the superpotential W(x) as

$$V_{\pm}(x) = W^2(x) \pm W'(x).$$
(6)

If $V_+(x)$ is an exactly solvable potential, then one can easily obtain the complete spectral properties of the partner $V_-(x)$ [7]. The point to be noted here is that $V_-(x)$ is not essentially shape invariant, but still exactly solvable.

One can take the following ansatz for the superpotential W(x),

$$W(x) = W_0(x) + f(x)$$
 (7)

where the superpotential $W_0(x)$ is chosen such that for f = 0 the corresponding partner potentials $V_{\pm}(x)$ belong to the known class of exactly solvable potentials.

If f is chosen such that it obeys the generalized Riccati equation

$$f^{2}(x) + 2W_{0}(x)f(x) + f'(x) = b$$
(8)

where b is an arbitrary real constant, then the partner potentials take the form

$$V_{+}(x) = W_{0}^{2}(x) + W_{0}'(x) + b$$
(9)

$$V_{-}(x) = W_{0}^{2}(x) - W_{0}'(x) + b - 2f'(x).$$
⁽¹⁰⁾

In the above expressions, *b* is an additive constant and $V_+(x)$ is taken to be exactly solvable. Choosing

$$f(x) = \frac{u'(x)}{u(x)} = \partial_x \ln u(x) \tag{11}$$

(8) reduces to

$$u''(x) + 2W_0(x)u'(x) - bu(x) = 0$$
(12)

with the general solution as

$$u(x) = \alpha u_1(x) + \beta u_2(x). \tag{13}$$

In the case of unbroken SUSY, $V_{-}(x)$ has an additional ground state given by

$$\psi_0(x) = \exp\left(-\int W(x) \,\mathrm{d}x\right) = \frac{1}{u(x)} \exp\left(-\int W_0(x) \,\mathrm{d}x\right). \tag{14}$$

Putting $\psi_0^{-1} = \chi$, the equation satisfied by χ is found to be

$$-\chi'' + (W_0^2 + W_0' + b)\chi = 0$$
⁽¹⁵⁾

i.e. χ is a formal eigenfunction of $V_+(x)$.

Thus if one identifies $V_+(x)$ with $\{\widehat{U}(x) + \beta\}$, where β is some constant, then

 $\chi \equiv \phi$

so that

$$U(x) = \widehat{U}(x) + 2\sigma_{xx}$$

= $\widehat{U}(x) - 2\frac{d^2}{dx^2} \ln \phi$
= $V_+(x) - \beta - 2\frac{d^2}{dx^2} \ln \phi$
= $W_0^2 - W_0' + b - 2f' - \beta$
= $V_-(x) - \beta$. (16)

This proves the equivalence of the Junker–Roy approach [7] and the backward Darboux one [8].

Linear harmonic oscillator

In this section we demonstrate the equivalence of the two methods with the help of an explicit example, namely, the linear harmonic oscillator.

$$\widehat{U}(x) = x^2. \tag{17}$$

The formal eigenfunctions can be obtained from the solutions of equation (12) [7]. A set of simple formal eigenfunctions is of the form [7, 8]

$$\phi_k = \frac{(-1)^k}{2^k \left(\frac{1}{2}\right)_k} H_{2k}(ix) e^{\frac{x^2}{2}}$$

= $\alpha_k u_k e^{\frac{x^2}{2}}$ (18)

where $H_m(z)$ denote the generalized Hermite polynomials [10].

Hence from (2) and (3), the backward Darboux transform of $\widehat{U}(x)$ assumes the form

$$U^{(k)}(x) = x^2 - 2 - 32k^2 \left\{ \frac{H_{2k-1}(ix)}{H_{2k}(ix)} \right\}^2 + 16k(2k-1)\frac{H_{2k-2}(ix)}{H_{2k}(ix)}.$$
 (19)

Since

$$u_k = H_{2k}(\mathbf{i}x) \tag{20}$$

f turns out to be

$$f = \frac{4ikH_{2k-1}(ix)}{H_{2k}(ix)}$$
$$= \sum_{i=1}^{k} \frac{2gx}{1+gx^2}$$
(21)

and

$$b = 4k \qquad \beta = b + 1 \tag{22}$$

giving the following superpotentials for successive orders:

k = 1

$$W(x) = x + \frac{2gx}{1 + gx^2}$$
 $g = 2$ (23)

k = 2

$$W(x) = x + \frac{2g_1x}{1+g_1x^2} + \frac{2g_2x}{1+g_2x^2}$$
(24)

with

$$g_1 = 2 + \frac{2}{3}\sqrt{6} \tag{25}$$

$$g_2 = 2 - \frac{2}{3}\sqrt{6} \tag{26}$$

proving that if one starts with the backward Darboux transformation [8], one can reproduce all the results of the CES potentials of Junker and Roy [7] and vice versa, showing the equivalence of the two methods. Analogous analyses hold for the Morse, the hyperbolic Pöschl–Teller and other potentials.

Acknowledgment

One of the authors (AS) thanks the Council of Scientific & Industrial Research, India, for financial assistance.

References

- Darboux G 1982 C. R. Acad. Sci., Paris 94 1456
 Matveev V B and Salle M A 1991 Darboux Transformations and Solitons (Springer Series in Nonlinear
- Dynamics) (Berlin: Springer) [2] Abraham P B and Moses H E 1980 Phys. Rev. A 22 1333
- [3] Infeld L and Hull T E 1951 *Rev. Mod. Phys.* **23** 28
- [4] Witten E 1981 Nucl. Phys. B 188 513
- [5] Sukumar C V 1985 J. Phys. A: Math. Gen. 18 2917
- [6] Pursey D L 1986 Phys. Rev. D 33 1048
 Pursey D L 1986 Phys. Rev. D 33 2267
 Pursey D L 1987 Phys. Rev. D 36 1103
- [7] Junker G and Roy P 1998 Ann. Phys. 270 155
 Junker G and Roy P 1997 Phys. Lett. A 232 155
- [8] Gómez-Ullate D, Kamran N and Milson R 2004 J. Phys. A: Math. Gen. 37 1789
- [9] Gendenshtein L E 1983 JETP Lett. 38 356
- [10] Abramowitz M and Stegun I A 1970 Handbook of Mathematical Functions (New York: Dover)